ArangoDB快速入门案例

此去经年,夏梦未央。我以为你会是我最温暖的夏阳。只是我忘了,我们都无力阻止四季的轮转。冬天过后,还是会有令人憎恨的闷热。是你浮夸了那一年寒冷的冬天。还是那一年的雪花蒸发了整个曾经

Posted by yishuifengxiao on 2021-12-27

一 准备数据

1.1 创建Characters数据表

先创建一个名为 Characters的数据表,然后插入以下数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
LET data = [
{ "name": "Robert", "surname": "Baratheon", "alive": false, "traits": ["A","H","C"] },
{ "name": "Jaime", "surname": "Lannister", "alive": true, "age": 36, "traits": ["A","F","B"] },
{ "name": "Catelyn", "surname": "Stark", "alive": false, "age": 40, "traits": ["D","H","C"] },
{ "name": "Cersei", "surname": "Lannister", "alive": true, "age": 36, "traits": ["H","E","F"] },
{ "name": "Daenerys", "surname": "Targaryen", "alive": true, "age": 16, "traits": ["D","H","C"] },
{ "name": "Jorah", "surname": "Mormont", "alive": false, "traits": ["A","B","C","F"] },
{ "name": "Petyr", "surname": "Baelish", "alive": false, "traits": ["E","G","F"] },
{ "name": "Viserys", "surname": "Targaryen", "alive": false, "traits": ["O","L","N"] },
{ "name": "Jon", "surname": "Snow", "alive": true, "age": 16, "traits": ["A","B","C","F"] },
{ "name": "Sansa", "surname": "Stark", "alive": true, "age": 13, "traits": ["D","I","J"] },
{ "name": "Arya", "surname": "Stark", "alive": true, "age": 11, "traits": ["C","K","L"] },
{ "name": "Robb", "surname": "Stark", "alive": false, "traits": ["A","B","C","K"] },
{ "name": "Theon", "surname": "Greyjoy", "alive": true, "age": 16, "traits": ["E","R","K"] },
{ "name": "Bran", "surname": "Stark", "alive": true, "age": 10, "traits": ["L","J"] },
{ "name": "Joffrey", "surname": "Baratheon", "alive": false, "age": 19, "traits": ["I","L","O"] },
{ "name": "Sandor", "surname": "Clegane", "alive": true, "traits": ["A","P","K","F"] },
{ "name": "Tyrion", "surname": "Lannister", "alive": true, "age": 32, "traits": ["F","K","M","N"] },
{ "name": "Khal", "surname": "Drogo", "alive": false, "traits": ["A","C","O","P"] },
{ "name": "Tywin", "surname": "Lannister", "alive": false, "traits": ["O","M","H","F"] },
{ "name": "Davos", "surname": "Seaworth", "alive": true, "age": 49, "traits": ["C","K","P","F"] },
{ "name": "Samwell", "surname": "Tarly", "alive": true, "age": 17, "traits": ["C","L","I"] },
{ "name": "Stannis", "surname": "Baratheon", "alive": false, "traits": ["H","O","P","M"] },
{ "name": "Melisandre", "alive": true, "traits": ["G","E","H"] },
{ "name": "Margaery", "surname": "Tyrell", "alive": false, "traits": ["M","D","B"] },
{ "name": "Jeor", "surname": "Mormont", "alive": false, "traits": ["C","H","M","P"] },
{ "name": "Bronn", "alive": true, "traits": ["K","E","C"] },
{ "name": "Varys", "alive": true, "traits": ["M","F","N","E"] },
{ "name": "Shae", "alive": false, "traits": ["M","D","G"] },
{ "name": "Talisa", "surname": "Maegyr", "alive": false, "traits": ["D","C","B"] },
{ "name": "Gendry", "alive": false, "traits": ["K","C","A"] },
{ "name": "Ygritte", "alive": false, "traits": ["A","P","K"] },
{ "name": "Tormund", "surname": "Giantsbane", "alive": true, "traits": ["C","P","A","I"] },
{ "name": "Gilly", "alive": true, "traits": ["L","J"] },
{ "name": "Brienne", "surname": "Tarth", "alive": true, "age": 32, "traits": ["P","C","A","K"] },
{ "name": "Ramsay", "surname": "Bolton", "alive": true, "traits": ["E","O","G","A"] },
{ "name": "Ellaria", "surname": "Sand", "alive": true, "traits": ["P","O","A","E"] },
{ "name": "Daario", "surname": "Naharis", "alive": true, "traits": ["K","P","A"] },
{ "name": "Missandei", "alive": true, "traits": ["D","L","C","M"] },
{ "name": "Tommen", "surname": "Baratheon", "alive": true, "traits": ["I","L","B"] },
{ "name": "Jaqen", "surname": "H'ghar", "alive": true, "traits": ["H","F","K"] },
{ "name": "Roose", "surname": "Bolton", "alive": true, "traits": ["H","E","F","A"] },
{ "name": "The High Sparrow", "alive": true, "traits": ["H","M","F","O"] }
]

FOR d IN data
INSERT d INTO Characters

执行完上述命令后,再执行以下命令,查看是否执行成功

1
2
3
FOR c IN Characters
limit 2
RETURN c

得到如下执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[
{
"_key": "109566",
"_id": "Characters/109566",
"_rev": "_ddlhG6C--_",
"name": "Robert",
"surname": "Baratheon",
"alive": false,
"traits": [
"A",
"H",
"C"
]
},
{
"_key": "109567",
"_id": "Characters/109567",
"_rev": "_ddlhG6C--B",
"name": "Jaime",
"surname": "Lannister",
"alive": true,
"age": 36,
"traits": [
"A",
"F",
"B"
]
}
]

1.2 创建Traits 数据表

1.2.1 创建并插入数据

创建一个名为Traits的数据表,然后执行以下命令:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
LET data =[
{ "_key": "A", "en": "strong", "de": "stark" },
{ "_key": "B", "en": "polite", "de": "freundlich" },
{ "_key": "C", "en": "loyal", "de": "loyal" },
{ "_key": "D", "en": "beautiful", "de": "schön" },
{ "_key": "E", "en": "sneaky", "de": "hinterlistig" },
{ "_key": "F", "en": "experienced", "de": "erfahren" },
{ "_key": "G", "en": "corrupt", "de": "korrupt" },
{ "_key": "H", "en": "powerful", "de": "einflussreich" },
{ "_key": "I", "en": "naive", "de": "naiv" },
{ "_key": "J", "en": "unmarried", "de": "unverheiratet" },
{ "_key": "K", "en": "skillful", "de": "geschickt" },
{ "_key": "L", "en": "young", "de": "jung" },
{ "_key": "M", "en": "smart", "de": "klug" },
{ "_key": "N", "en": "rational", "de": "rational" },
{ "_key": "O", "en": "ruthless", "de": "skrupellos" },
{ "_key": "P", "en": "brave", "de": "mutig" },
{ "_key": "Q", "en": "mighty", "de": "mächtig" },
{ "_key": "R", "en": "weak", "de": "schwach" }
]

for d in data
INSERT d INTO Traits

然后执行下面命令,查看数据是否插入成功

1
2
3
FOR c IN Traits
limit 2
RETURN c

得到的运行结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[
{
"_key": "A",
"_id": "Traits/A",
"_rev": "_ddllNrK--_",
"en": "strong",
"de": "stark"
},
{
"_key": "B",
"_id": "Traits/B",
"_rev": "_ddllNrK--B",
"en": "polite",
"de": "freundlich"
}
]

1.2.2 跨表查询

结合上面两个数据库查询

执行以下命令

1
2
3
FOR c IN Characters
limit 2
RETURN DOCUMENT("Traits", c.traits)

得到的运行结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
[
[
{
"_key": "A",
"_id": "Traits/A",
"_rev": "_ddllNrK--_",
"en": "strong",
"de": "stark"
},
{
"_key": "H",
"_id": "Traits/H",
"_rev": "_ddllNrK--N",
"en": "powerful",
"de": "einflussreich"
},
{
"_key": "C",
"_id": "Traits/C",
"_rev": "_ddllNrK--D",
"en": "loyal",
"de": "loyal"
}
],
[
{
"_key": "A",
"_id": "Traits/A",
"_rev": "_ddllNrK--_",
"en": "strong",
"de": "stark"
},
{
"_key": "F",
"_id": "Traits/F",
"_rev": "_ddllNrK--J",
"en": "experienced",
"de": "erfahren"
},
{
"_key": "B",
"_id": "Traits/B",
"_rev": "_ddllNrK--B",
"en": "polite",
"de": "freundlich"
}
]
]

注意: 返回结果为两个数组

image-20211227112512762

1.2.3 合并查询结果

执行以下命令

1
2
3
FOR c IN Characters
limit 2
RETURN MERGE(c, { traits: DOCUMENT("Traits", c.traits)[*].en } )

得到的运行结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
[
{
"_id": "Characters/109566",
"_key": "109566",
"_rev": "_ddlhG6C--_",
"alive": false,
"name": "Robert",
"surname": "Baratheon",
"traits": [
"strong",
"powerful",
"loyal"
]
},
{
"_id": "Characters/109567",
"_key": "109567",
"_rev": "_ddlhG6C--B",
"age": 36,
"alive": true,
"name": "Jaime",
"surname": "Lannister",
"traits": [
"strong",
"experienced",
"polite"
]
}
]

1.3 创建ChildOf 边缘表

创建一个名为ChildOf的边缘集合。

然后插入数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
LET data = [
{
"parent": { "name": "Ned", "surname": "Stark" },
"child": { "name": "Robb", "surname": "Stark" }
}, {
"parent": { "name": "Ned", "surname": "Stark" },
"child": { "name": "Sansa", "surname": "Stark" }
}, {
"parent": { "name": "Ned", "surname": "Stark" },
"child": { "name": "Arya", "surname": "Stark" }
}, {
"parent": { "name": "Ned", "surname": "Stark" },
"child": { "name": "Bran", "surname": "Stark" }
}, {
"parent": { "name": "Catelyn", "surname": "Stark" },
"child": { "name": "Robb", "surname": "Stark" }
}, {
"parent": { "name": "Catelyn", "surname": "Stark" },
"child": { "name": "Sansa", "surname": "Stark" }
}, {
"parent": { "name": "Catelyn", "surname": "Stark" },
"child": { "name": "Arya", "surname": "Stark" }
}, {
"parent": { "name": "Catelyn", "surname": "Stark" },
"child": { "name": "Bran", "surname": "Stark" }
}, {
"parent": { "name": "Ned", "surname": "Stark" },
"child": { "name": "Jon", "surname": "Snow" }
}, {
"parent": { "name": "Tywin", "surname": "Lannister" },
"child": { "name": "Jaime", "surname": "Lannister" }
}, {
"parent": { "name": "Tywin", "surname": "Lannister" },
"child": { "name": "Cersei", "surname": "Lannister" }
}, {
"parent": { "name": "Tywin", "surname": "Lannister" },
"child": { "name": "Tyrion", "surname": "Lannister" }
}, {
"parent": { "name": "Cersei", "surname": "Lannister" },
"child": { "name": "Joffrey", "surname": "Baratheon" }
}, {
"parent": { "name": "Jaime", "surname": "Lannister" },
"child": { "name": "Joffrey", "surname": "Baratheon" }
}
]

FOR rel in data
LET parentId = FIRST(
FOR c IN Characters
FILTER c.name == rel.parent.name
FILTER c.surname == rel.parent.surname
LIMIT 1
RETURN c._id
)
LET childId = FIRST(
FOR c IN Characters
FILTER c.name == rel.child.name
FILTER c.surname == rel.child.surname
LIMIT 1
RETURN c._id
)
FILTER parentId != null AND childId != null
INSERT { _from: childId, _to: parentId } INTO ChildOf
RETURN NEW

执行完成上述命令后,得到的响应如下

image-20211227113419643

将其中的两个结果放大

image-20211227113546372

image-20211227113625844

也可以使用以下命令直接插入数据

1
INSERT { _from: "Characters/robb", _to: "Characters/ned" } INTO ChildOf

其中的Characters/robbCharacters/ned分别为两个数据的id。

二 遍历数据

2.1 查询父节点(OUTBOUND查询_to)

2.1.1 查询示例

2.1.1.1 示例1

使用下面的查询语句进行查询

1
2
FOR v IN 1..1 OUTBOUND "Characters/109568" ChildOf
RETURN v

得到的查询结果如下

1
[]

即查询出来的数据为空。


2.1.1.2 示例2

使用下面的查询语句进行查询

1
2
FOR v IN 1..1 OUTBOUND "Characters/109576" ChildOf
RETURN v

得到的查询结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[
{
"_key": "109568",
"_id": "Characters/109568",
"_rev": "_ddlhG6C--D",
"name": "Catelyn",
"surname": "Stark",
"alive": false,
"age": 40,
"traits": [
"D",
"H",
"C"
]
}
]

2.1.1.3 示例3

使用下面的语句进行查询

1
2
FOR v IN 1..1 OUTBOUND "Characters/109569" ChildOf
RETURN v

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[
{
"_key": "109584",
"_id": "Characters/109584",
"_rev": "_ddlhG6G--D",
"name": "Tywin",
"surname": "Lannister",
"alive": false,
"traits": [
"O",
"M",
"H",
"F"
]
}
]

2.1.1.4 示例4

使用下面的查询语句进行查询

1
2
FOR v IN 1..2 OUTBOUND "Characters/109580" ChildOf
RETURN v

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
[
{
"_key": "109569",
"_id": "Characters/109569",
"_rev": "_ddlhG6C--F",
"name": "Cersei",
"surname": "Lannister",
"alive": true,
"age": 36,
"traits": [
"H",
"E",
"F"
]
},
{
"_key": "109584",
"_id": "Characters/109584",
"_rev": "_ddlhG6G--D",
"name": "Tywin",
"surname": "Lannister",
"alive": false,
"traits": [
"O",
"M",
"H",
"F"
]
},
{
"_key": "109567",
"_id": "Characters/109567",
"_rev": "_ddlhG6C--B",
"name": "Jaime",
"surname": "Lannister",
"alive": true,
"age": 36,
"traits": [
"A",
"F",
"B"
]
},
{
"_key": "109584",
"_id": "Characters/109584",
"_rev": "_ddlhG6G--D",
"name": "Tywin",
"surname": "Lannister",
"alive": false,
"traits": [
"O",
"M",
"H",
"F"
]
}
]

一共返回四条数据(其中109584这个节点重复出现一次


2.1.1.5 示例5

使用下面的命令进行查询

1
2
FOR v IN 1..1 OUTBOUND  ChildOf "Characters/109580"
RETURN v

此查询语句会产生错误

image-20211227132836003

2.1.2 结论

使用图表方式展示边缘集合 ChildOf 的数据如下

image-20211227123728491

从上述查询语句和结果可以看出:

  • OUTBOUND关键字用于查询当前节点所指向的_to节点。
  • INOUTBOUND关键字之间的1..2决定着查找深度。
  • 查询结果默认不会去重,在多个遍历路径时若有相同的节点参与遍历,该节点可能会出现多次。

2.2 查询子节点(INBOUND查询_from)

2.2.1 查询示例

2.2.1.1 示例1

使用下面的语句进行查询

1
2
FOR v IN 1..1 INBOUND "Characters/109568" ChildOf
RETURN v

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
[
{
"_key": "109577",
"_id": "Characters/109577",
"_rev": "_ddlhG6C--V",
"name": "Robb",
"surname": "Stark",
"alive": false,
"traits": [
"A",
"B",
"C",
"K"
]
},
{
"_key": "109575",
"_id": "Characters/109575",
"_rev": "_ddlhG6C--R",
"name": "Sansa",
"surname": "Stark",
"alive": true,
"age": 13,
"traits": [
"D",
"I",
"J"
]
},
{
"_key": "109576",
"_id": "Characters/109576",
"_rev": "_ddlhG6C--T",
"name": "Arya",
"surname": "Stark",
"alive": true,
"age": 11,
"traits": [
"C",
"K",
"L"
]
},
{
"_key": "109579",
"_id": "Characters/109579",
"_rev": "_ddlhG6C--Z",
"name": "Bran",
"surname": "Stark",
"alive": true,
"age": 10,
"traits": [
"L",
"J"
]
}
]

2.2.1.1 示例2

使用下面的语句进行查询

1
2
FOR v IN 1..1 InBOUND "Characters/109576" ChildOf
RETURN v

得到的查询结果如下

1
[]

即查询出来的数据为空。


2.2.1.3 示例3

使用下面的语句进行查询

1
2
FOR v IN 1..1 INBOUND "Characters/109569" ChildOf
RETURN v

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
}
]

2.2.1.4 示例4

使用下面的查询语句进行查询

1
2
FOR v IN 1..2 INBOUND "Characters/109580" ChildOf
RETURN v

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
[
{
"_key": "109567",
"_id": "Characters/109567",
"_rev": "_ddlhG6C--B",
"name": "Jaime",
"surname": "Lannister",
"alive": true,
"age": 36,
"traits": [
"A",
"F",
"B"
]
},
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
},
{
"_key": "109569",
"_id": "Characters/109569",
"_rev": "_ddlhG6C--F",
"name": "Cersei",
"surname": "Lannister",
"alive": true,
"age": 36,
"traits": [
"H",
"E",
"F"
]
},
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
},
{
"_key": "109582",
"_id": "Characters/109582",
"_rev": "_ddlhG6G--_",
"name": "Tyrion",
"surname": "Lannister",
"alive": true,
"age": 32,
"traits": [
"F",
"K",
"M",
"N"
]
}
]

使用表格展示如下

image-20211227133628561


2.2.1.5 示例5

使用下面的命令进行查询

1
2
FOR v IN 1..1 INBOUND  ChildOf "Characters/109569"
RETURN v

此查询语句会产生错误

image-20211227134031770

2.2.2 结论

根据上面的查询示例语句及其结果可以得知:

  • INBOUND关键字用于查询当前节点所指向的_from节点
  • ININBOUND关键字之间的1..2决定着查找深度。

2.3 查询孙节点(INBOUND查询_from)

2.3.1 基本示例

使用查询的查询语句进行查询

1
2
3
4
FOR c IN Characters
FILTER c.name == "Tywin"
FOR v IN 2..2 INBOUND c ChildOf
RETURN v

注意这里的起点为name为Tywin的点。(即起点为Characters/109584 的节点)

得到的查询结果如下

image-20211227135014304

使用JSON数据表示为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
[
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
},
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
}
]

注意,在上述查询结果中, 得到的数据默认不会进行去重处理

2.3.2 数据去重

在上面所有的查询语句中,得到查询结果默认都不会进行去重处理,为了对结果进行去重,可以使用 DISTINCT关键字

使用下面的语句查询:

1
2
3
4
FOR c IN Characters
FILTER c.name == "Tywin"
FOR v IN 2..2 INBOUND c ChildOf
RETURN DISTINCT (v)

得到的结果如下

image-20211227135727826

JSON数据表示为

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
[
{
"_key": "109580",
"_id": "Characters/109580",
"_rev": "_ddlhG6C--b",
"name": "Joffrey",
"surname": "Baratheon",
"alive": false,
"age": 19,
"traits": [
"I",
"L",
"O"
]
}
]

三 聚合查询

3.1 查询数量统计

结合上面的查询数据,使用下面的语句进行查询

1
2
3
4
5
FOR c IN Characters
FILTER c.name == "Tywin"
FOR v IN 2..2 INBOUND c ChildOf
COLLECT actor = v WITH COUNT INTO counter
RETURN counter

得到的查询结果如下

1
2
3
[
2
]

可以看到,在使用上述查询语句时,数据库未对相同的节点进行去重统计


若使用系统中提供的 lengthCOUNT关键字进行查询,则得到的结构如下

注意:在arangodb中COUNTlength的别名

1
2
3
4
FOR c IN Characters
FILTER c.name == "Tywin"
FOR v IN 2..2 INBOUND c ChildOf
return COUNT(v)

得到的结果如下

1
2
3
4
[
8,
8
]

这里统计的结果里元素的属性的数量。

四 使用示例

4.1 数据准备

4.1.1 准备actors数据

先创建一个名为 actors的数据表,然后准备一下数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
LET data=[
{
"_key": "Keanu",
"_id": "actors/Keanu",
"_rev": "_ddo5sIW---",
"name": "Keanu Reeves",
"born": 1964
},
{
"_key": "Carrie",
"_id": "actors/Carrie",
"_rev": "_ddo5sLO---",
"name": "Carrie-Anne Moss",
"born": 1967
},
{
"_key": "Laurence",
"_id": "actors/Laurence",
"_rev": "_ddo5sii---",
"name": "Laurence Fishburne",
"born": 1961
},
{
"_key": "Hugo",
"_id": "actors/Hugo",
"_rev": "_ddo5sk2---",
"name": "Hugo Weaving",
"born": 1960
},
{
"_key": "Emil",
"_id": "actors/Emil",
"_rev": "_ddo5soC---",
"name": "Emil Eifrem",
"born": 1978
},
{
"_key": "Charlize",
"_id": "actors/Charlize",
"_rev": "_ddo5ttS---",
"name": "Charlize Theron",
"born": 1975
},
{
"_key": "Al",
"_id": "actors/Al",
"_rev": "_ddo5tw6---",
"name": "Al Pacino",
"born": 1940
},
{
"_key": "TomC",
"_id": "actors/TomC",
"_rev": "_ddo5uNe---",
"name": "Tom Cruise",
"born": 1962
},
{
"_key": "JackN",
"_id": "actors/JackN",
"_rev": "_ddo5uQC---",
"name": "Jack Nicholson",
"born": 1937
},
{
"_key": "DemiM",
"_id": "actors/DemiM",
"_rev": "_ddo5uTS---",
"name": "Demi Moore",
"born": 1962
},
{
"_key": "KevinB",
"_id": "actors/KevinB",
"_rev": "_ddo5uV2---",
"name": "Kevin Bacon",
"born": 1958
},
{
"_key": "KieferS",
"_id": "actors/KieferS",
"_rev": "_ddo5uaK---",
"name": "Kiefer Sutherland",
"born": 1966
},
{
"_key": "NoahW",
"_id": "actors/NoahW",
"_rev": "_ddo5ucy---",
"name": "Noah Wyle",
"born": 1971
},
{
"_key": "CubaG",
"_id": "actors/CubaG",
"_rev": "_ddo5ufW---",
"name": "Cuba Gooding Jr.",
"born": 1968
},
{
"_key": "KevinP",
"_id": "actors/KevinP",
"_rev": "_ddo5uhS---",
"name": "Kevin Pollak",
"born": 1957
},
{
"_key": "JTW",
"_id": "actors/JTW",
"_rev": "_ddo5ujS---",
"name": "J.T. Walsh",
"born": 1943
},
{
"_key": "JamesM",
"_id": "actors/JamesM",
"_rev": "_ddo5umG---",
"name": "James Marshall",
"born": 1967
},
{
"_key": "ChristopherG",
"_id": "actors/ChristopherG",
"_rev": "_ddo5upy---",
"name": "Christopher Guest",
"born": 1948
},
{
"_key": "KellyM",
"_id": "actors/KellyM",
"_rev": "_ddo5vWu---",
"name": "Kelly McGillis",
"born": 1957
},
{
"_key": "ValK",
"_id": "actors/ValK",
"_rev": "_ddo5vZS---",
"name": "Val Kilmer",
"born": 1959
},
{
"_key": "AnthonyE",
"_id": "actors/AnthonyE",
"_rev": "_ddo5vb2---",
"name": "Anthony Edwards",
"born": 1962
},
{
"_key": "TomS",
"_id": "actors/TomS",
"_rev": "_ddo5veW---",
"name": "Tom Skerritt",
"born": 1933
},
{
"_key": "MegR",
"_id": "actors/MegR",
"_rev": "_ddo5vhi---",
"name": "Meg Ryan",
"born": 1961
},
{
"_key": "ReneeZ",
"_id": "actors/ReneeZ",
"_rev": "_ddo5v6m---",
"name": "Renee Zellweger",
"born": 1969
},
{
"_key": "KellyP",
"_id": "actors/KellyP",
"_rev": "_ddo5v9S---",
"name": "Kelly Preston",
"born": 1962
},
{
"_key": "JerryO",
"_id": "actors/JerryO",
"_rev": "_ddo5wAG---",
"name": "Jerry O'Connell",
"born": 1974
},
{
"_key": "JayM",
"_id": "actors/JayM",
"_rev": "_ddo5wCu---",
"name": "Jay Mohr",
"born": 1970
},
{
"_key": "BonnieH",
"_id": "actors/BonnieH",
"_rev": "_ddo5wHi---",
"name": "Bonnie Hunt",
"born": 1961
},
{
"_key": "ReginaK",
"_id": "actors/ReginaK",
"_rev": "_ddo5wK2---",
"name": "Regina King",
"born": 1971
},
{
"_key": "JonathanL",
"_id": "actors/JonathanL",
"_rev": "_ddo5wN2---",
"name": "Jonathan Lipnicki",
"born": 1996
},
{
"_key": "RiverP",
"_id": "actors/RiverP",
"_rev": "_ddo5w7i---",
"name": "River Phoenix",
"born": 1970
},
{
"_key": "CoreyF",
"_id": "actors/CoreyF",
"_rev": "_ddo5x-W---",
"name": "Corey Feldman",
"born": 1971
},
{
"_key": "WilW",
"_id": "actors/WilW",
"_rev": "_ddo5xB----",
"name": "Wil Wheaton",
"born": 1972
},
{
"_key": "JohnC",
"_id": "actors/JohnC",
"_rev": "_ddo5xDy---",
"name": "John Cusack",
"born": 1966
},
{
"_key": "MarshallB",
"_id": "actors/MarshallB",
"_rev": "_ddo5xGi---",
"name": "Marshall Bell",
"born": 1942
},
{
"_key": "HelenH",
"_id": "actors/HelenH",
"_rev": "_ddo5xoi---",
"name": "Helen Hunt",
"born": 1963
},
{
"_key": "GregK",
"_id": "actors/GregK",
"_rev": "_ddo5xrW---",
"name": "Greg Kinnear",
"born": 1963
},
{
"_key": "AnnabellaS",
"_id": "actors/AnnabellaS",
"_rev": "_ddo5yGy---",
"name": "Annabella Sciorra",
"born": 1960
},
{
"_key": "MaxS",
"_id": "actors/MaxS",
"_rev": "_ddo5yKm---",
"name": "Max von Sydow",
"born": 1929
},
{
"_key": "WernerH",
"_id": "actors/WernerH",
"_rev": "_ddo5yN6---",
"name": "Werner Herzog",
"born": 1942
},
{
"_key": "Robin",
"_id": "actors/Robin",
"_rev": "_ddo5yQi---",
"name": "Robin Williams",
"born": 1951
},
{
"_key": "EthanH",
"_id": "actors/EthanH",
"_rev": "_ddo5ypq---",
"name": "Ethan Hawke",
"born": 1970
},
{
"_key": "RickY",
"_id": "actors/RickY",
"_rev": "_ddo5ys----",
"name": "Rick Yune",
"born": 1971
},
{
"_key": "JamesC",
"_id": "actors/JamesC",
"_rev": "_ddo5yum---",
"name": "James Cromwell",
"born": 1940
},
{
"_key": "ParkerP",
"_id": "actors/ParkerP",
"_rev": "_ddo5zHK---",
"name": "Parker Posey",
"born": 1968
},
{
"_key": "DaveC",
"_id": "actors/DaveC",
"_rev": "_ddo5zKW---",
"name": "Dave Chappelle",
"born": 1973
},
{
"_key": "SteveZ",
"_id": "actors/SteveZ",
"_rev": "_ddo5zMy---",
"name": "Steve Zahn",
"born": 1967
},
{
"_key": "TomH",
"_id": "actors/TomH",
"_rev": "_ddo5zO6---",
"name": "Tom Hanks",
"born": 1956
},
{
"_key": "RitaW",
"_id": "actors/RitaW",
"_rev": "_ddo5zwW---",
"name": "Rita Wilson",
"born": 1956
},
{
"_key": "BillPull",
"_id": "actors/BillPull",
"_rev": "_ddo5zyu---",
"name": "Bill Pullman",
"born": 1953
},
{
"_key": "VictorG",
"_id": "actors/VictorG",
"_rev": "_ddo5z1a---",
"name": "Victor Garber",
"born": 1949
},
{
"_key": "RosieO",
"_id": "actors/RosieO",
"_rev": "_ddo5z5q---",
"name": "Rosie O'Donnell",
"born": 1962
},
{
"_key": "Nathan",
"_id": "actors/Nathan",
"_rev": "_ddo50V----",
"name": "Nathan Lane",
"born": 1956
},
{
"_key": "BillyC",
"_id": "actors/BillyC",
"_rev": "_ddo50qW---",
"name": "Billy Crystal",
"born": 1948
},
{
"_key": "CarrieF",
"_id": "actors/CarrieF",
"_rev": "_ddo50s2---",
"name": "Carrie Fisher",
"born": 1956
},
{
"_key": "BrunoK",
"_id": "actors/BrunoK",
"_rev": "_ddo50wm---",
"name": "Bruno Kirby",
"born": 1949
}
]

for d in data
INSERT d INTO actors

4.1.2 准备movies数据

创建一个名为 movies 的数据表,然后执行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
LET data=[
{
"_key": "TheMatrix",
"_id": "movies/TheMatrix",
"_rev": "_ddo5sFG---",
"title": "The Matrix",
"released": 1999,
"tagline": "Welcome to the Real World"
},
{
"_key": "TheMatrixReloaded",
"_id": "movies/TheMatrixReloaded",
"_rev": "_ddo5t-----",
"title": "The Matrix Reloaded",
"released": 2003,
"tagline": "Free your mind"
},
{
"_key": "TheMatrixRevolutions",
"_id": "movies/TheMatrixRevolutions",
"_rev": "_ddo5tTW---",
"title": "The Matrix Revolutions",
"released": 2003,
"tagline": "Everything that has a beginning has an end"
},
{
"_key": "TheDevilsAdvocate",
"_id": "movies/TheDevilsAdvocate",
"_rev": "_ddo5tqi---",
"title": "The Devil's Advocate",
"released": 1997,
"tagline": "Evil has its winning ways"
},
{
"_key": "AFewGoodMen",
"_id": "movies/AFewGoodMen",
"_rev": "_ddo5uKq---",
"title": "A Few Good Men",
"released": 1992,
"tagline": "In the heart of the nation's capital, in a courthouse of the U.S. government, one man will stop at nothing to keep his honor, and one will stop at nothing to find the truth."
},
{
"_key": "TopGun",
"_id": "movies/TopGun",
"_rev": "_ddo5vUG---",
"title": "Top Gun",
"released": 1986,
"tagline": "I feel the need, the need for speed."
},
{
"_key": "JerryMaguire",
"_id": "movies/JerryMaguire",
"_rev": "_ddo5v4K---",
"title": "Jerry Maguire",
"released": 2000,
"tagline": "The rest of his life begins now."
},
{
"_key": "StandByMe",
"_id": "movies/StandByMe",
"_rev": "_ddo5w3e---",
"title": "Stand By Me",
"released": 1986,
"tagline": "For some, it's the last real taste of innocence, and the first real taste of life. But for everyone, it's the time that memories are made of."
},
{
"_key": "AsGoodAsItGets",
"_id": "movies/AsGoodAsItGets",
"_rev": "_ddo5xl2---",
"title": "As Good as It Gets",
"released": 1997,
"tagline": "A comedy from the heart that goes for the throat."
},
{
"_key": "WhatDreamsMayCome",
"_id": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yDC---",
"title": "What Dreams May Come",
"released": 1998,
"tagline": "After life there is more. The end is just the beginning."
},
{
"_key": "SnowFallingonCedars",
"_id": "movies/SnowFallingonCedars",
"_rev": "_ddo5ymi---",
"title": "Snow Falling on Cedars",
"released": 1999,
"tagline": "First loves last. Forever."
},
{
"_key": "YouveGotMail",
"_id": "movies/YouveGotMail",
"_rev": "_ddo5zD2---",
"title": "You've Got Mail",
"released": 1998,
"tagline": "At odds in life... in love on-line."
},
{
"_key": "SleeplessInSeattle",
"_id": "movies/SleeplessInSeattle",
"_rev": "_ddo5zuG---",
"title": "Sleepless in Seattle",
"released": 1993,
"tagline": "What if someone you never met, someone you never saw, someone you never knew was the only someone for you?"
},
{
"_key": "JoeVersustheVolcano",
"_id": "movies/JoeVersustheVolcano",
"_rev": "_ddo50S2---",
"title": "Joe Versus the Volcano",
"released": 1990,
"tagline": "A story of love, lava and burning desire."
},
{
"_key": "WhenHarryMetSally",
"_id": "movies/WhenHarryMetSally",
"_rev": "_ddo50nm---",
"title": "When Harry Met Sally",
"released": 1998,
"tagline": "At odds in life... in love on-line."
}
]

for d in data
INSERT d INTO movies

4.1.3 准备actsIn数据

创建一个名为 actsIn 的边缘集合,然后执行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
let data=[
{
"_key": "172",
"_id": "actsIn/172",
"_from": "actors/Keanu",
"_to": "movies/TheMatrix",
"_rev": "_ddo5sqm---",
"roles": [
"Neo"
],
"year": 1999
},
{
"_key": "174",
"_id": "actsIn/174",
"_from": "actors/Carrie",
"_to": "movies/TheMatrix",
"_rev": "_ddo5ss6---",
"roles": [
"Trinity"
],
"year": 1999
},
{
"_key": "176",
"_id": "actsIn/176",
"_from": "actors/Laurence",
"_to": "movies/TheMatrix",
"_rev": "_ddo5svG---",
"roles": [
"Morpheus"
],
"year": 1999
},
{
"_key": "178",
"_id": "actsIn/178",
"_from": "actors/Hugo",
"_to": "movies/TheMatrix",
"_rev": "_ddo5sxS---",
"roles": [
"Agent Smith"
],
"year": 1999
},
{
"_key": "180",
"_id": "actsIn/180",
"_from": "actors/Emil",
"_to": "movies/TheMatrix",
"_rev": "_ddo5szW---",
"roles": [
"Emil"
],
"year": 1999
},
{
"_key": "183",
"_id": "actsIn/183",
"_from": "actors/Keanu",
"_to": "movies/TheMatrixReloaded",
"_rev": "_ddo5tBa---",
"roles": [
"Neo"
],
"year": 2003
},
{
"_key": "185",
"_id": "actsIn/185",
"_from": "actors/Carrie",
"_to": "movies/TheMatrixReloaded",
"_rev": "_ddo5tEe---",
"roles": [
"Trinity"
],
"year": 2003
},
{
"_key": "187",
"_id": "actsIn/187",
"_from": "actors/Laurence",
"_to": "movies/TheMatrixReloaded",
"_rev": "_ddo5tHK---",
"roles": [
"Morpheus"
],
"year": 2003
},
{
"_key": "189",
"_id": "actsIn/189",
"_from": "actors/Hugo",
"_to": "movies/TheMatrixReloaded",
"_rev": "_ddo5tJq---",
"roles": [
"Agent Smith"
],
"year": 2003
},
{
"_key": "192",
"_id": "actsIn/192",
"_from": "actors/Keanu",
"_to": "movies/TheMatrixRevolutions",
"_rev": "_ddo5tVq---",
"roles": [
"Neo"
],
"year": 2003
},
{
"_key": "194",
"_id": "actsIn/194",
"_from": "actors/Carrie",
"_to": "movies/TheMatrixRevolutions",
"_rev": "_ddo5tYC---",
"roles": [
"Trinity"
],
"year": 2003
},
{
"_key": "196",
"_id": "actsIn/196",
"_from": "actors/Laurence",
"_to": "movies/TheMatrixRevolutions",
"_rev": "_ddo5ta6---",
"roles": [
"Morpheus"
],
"year": 2003
},
{
"_key": "198",
"_id": "actsIn/198",
"_from": "actors/Hugo",
"_to": "movies/TheMatrixRevolutions",
"_rev": "_ddo5tfO---",
"roles": [
"Agent Smith"
],
"year": 2003
},
{
"_key": "203",
"_id": "actsIn/203",
"_from": "actors/Keanu",
"_to": "movies/TheDevilsAdvocate",
"_rev": "_ddo5tz6---",
"roles": [
"Kevin Lomax"
],
"year": 1997
},
{
"_key": "205",
"_id": "actsIn/205",
"_from": "actors/Charlize",
"_to": "movies/TheDevilsAdvocate",
"_rev": "_ddo5t3y---",
"roles": [
"Mary Ann Lomax"
],
"year": 1997
},
{
"_key": "207",
"_id": "actsIn/207",
"_from": "actors/Al",
"_to": "movies/TheDevilsAdvocate",
"_rev": "_ddo5t6m---",
"roles": [
"John Milton"
],
"year": 1997
},
{
"_key": "221",
"_id": "actsIn/221",
"_from": "actors/TomC",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5utq---",
"roles": [
"Lt. Daniel Kaffee"
],
"year": 1992
},
{
"_key": "223",
"_id": "actsIn/223",
"_from": "actors/JackN",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5uwS---",
"roles": [
"Col. Nathan R. Jessup"
],
"year": 1992
},
{
"_key": "225",
"_id": "actsIn/225",
"_from": "actors/DemiM",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5uzC---",
"roles": [
"Lt. Cdr. JoAnne Galloway"
],
"year": 1992
},
{
"_key": "227",
"_id": "actsIn/227",
"_from": "actors/KevinB",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5u2K---",
"roles": [
"Capt. Jack Ross"
],
"year": 1992
},
{
"_key": "229",
"_id": "actsIn/229",
"_from": "actors/KieferS",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5u5C---",
"roles": [
"Lt. Jonathan Kendrick"
],
"year": 1992
},
{
"_key": "231",
"_id": "actsIn/231",
"_from": "actors/NoahW",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5u7y---",
"roles": [
"Cpl. Jeffrey Barnes"
],
"year": 1992
},
{
"_key": "233",
"_id": "actsIn/233",
"_from": "actors/CubaG",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5vA----",
"roles": [
"Cpl. Carl Hammaker"
],
"year": 1992
},
{
"_key": "235",
"_id": "actsIn/235",
"_from": "actors/KevinP",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5vCm---",
"roles": [
"Lt. Sam Weinberg"
],
"year": 1992
},
{
"_key": "237",
"_id": "actsIn/237",
"_from": "actors/JTW",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5vGa---",
"roles": [
"Lt. Col. Matthew Andrew Markinson"
],
"year": 1992
},
{
"_key": "239",
"_id": "actsIn/239",
"_from": "actors/JamesM",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5vJi---",
"roles": [
"Pfc. Louden Downey"
],
"year": 1992
},
{
"_key": "241",
"_id": "actsIn/241",
"_from": "actors/ChristopherG",
"_to": "movies/AFewGoodMen",
"_rev": "_ddo5vMe---",
"roles": [
"Dr. Stone"
],
"year": 1992
},
{
"_key": "249",
"_id": "actsIn/249",
"_from": "actors/TomC",
"_to": "movies/TopGun",
"_rev": "_ddo5vka---",
"roles": [
"Maverick"
],
"year": 1986
},
{
"_key": "251",
"_id": "actsIn/251",
"_from": "actors/KellyM",
"_to": "movies/TopGun",
"_rev": "_ddo5vmu---",
"roles": [
"Charlie"
],
"year": 1986
},
{
"_key": "253",
"_id": "actsIn/253",
"_from": "actors/ValK",
"_to": "movies/TopGun",
"_rev": "_ddo5vou---",
"roles": [
"Iceman"
],
"year": 1986
},
{
"_key": "255",
"_id": "actsIn/255",
"_from": "actors/AnthonyE",
"_to": "movies/TopGun",
"_rev": "_ddo5vr----",
"roles": [
"Goose"
],
"year": 1986
},
{
"_key": "257",
"_id": "actsIn/257",
"_from": "actors/TomS",
"_to": "movies/TopGun",
"_rev": "_ddo5vtW---",
"roles": [
"Viper"
],
"year": 1986
},
{
"_key": "259",
"_id": "actsIn/259",
"_from": "actors/MegR",
"_to": "movies/TopGun",
"_rev": "_ddo5vva---",
"roles": [
"Carole"
],
"year": 1986
},
{
"_key": "269",
"_id": "actsIn/269",
"_from": "actors/TomC",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wQW---",
"roles": [
"Jerry Maguire"
],
"year": 2000
},
{
"_key": "271",
"_id": "actsIn/271",
"_from": "actors/CubaG",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wSm---",
"roles": [
"Rod Tidwell"
],
"year": 2000
},
{
"_key": "273",
"_id": "actsIn/273",
"_from": "actors/ReneeZ",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wV2---",
"roles": [
"Dorothy Boyd"
],
"year": 2000
},
{
"_key": "275",
"_id": "actsIn/275",
"_from": "actors/KellyP",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wZG---",
"roles": [
"Avery Bishop"
],
"year": 2000
},
{
"_key": "277",
"_id": "actsIn/277",
"_from": "actors/JerryO",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wbq---",
"roles": [
"Frank Cushman"
],
"year": 2000
},
{
"_key": "279",
"_id": "actsIn/279",
"_from": "actors/JayM",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5weG---",
"roles": [
"Bob Sugar"
],
"year": 2000
},
{
"_key": "281",
"_id": "actsIn/281",
"_from": "actors/BonnieH",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wgq---",
"roles": [
"Laurel Boyd"
],
"year": 2000
},
{
"_key": "283",
"_id": "actsIn/283",
"_from": "actors/ReginaK",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wjm---",
"roles": [
"Marcee Tidwell"
],
"year": 2000
},
{
"_key": "285",
"_id": "actsIn/285",
"_from": "actors/JonathanL",
"_to": "movies/JerryMaguire",
"_rev": "_ddo5wo2---",
"roles": [
"Ray Boyd"
],
"year": 2000
},
{
"_key": "297",
"_id": "actsIn/297",
"_from": "actors/WilW",
"_to": "movies/StandByMe",
"_rev": "_ddo5xJu---",
"roles": [
"Gordie Lachance"
],
"year": 1986
},
{
"_key": "299",
"_id": "actsIn/299",
"_from": "actors/RiverP",
"_to": "movies/StandByMe",
"_rev": "_ddo5xNe---",
"roles": [
"Chris Chambers"
],
"year": 1986
},
{
"_key": "301",
"_id": "actsIn/301",
"_from": "actors/JerryO",
"_to": "movies/StandByMe",
"_rev": "_ddo5xP2---",
"roles": [
"Vern Tessio"
],
"year": 1986
},
{
"_key": "303",
"_id": "actsIn/303",
"_from": "actors/CoreyF",
"_to": "movies/StandByMe",
"_rev": "_ddo5xT----",
"roles": [
"Teddy Duchamp"
],
"year": 1986
},
{
"_key": "305",
"_id": "actsIn/305",
"_from": "actors/JohnC",
"_to": "movies/StandByMe",
"_rev": "_ddo5xVO---",
"roles": [
"Denny Lachance"
],
"year": 1986
},
{
"_key": "307",
"_id": "actsIn/307",
"_from": "actors/KieferS",
"_to": "movies/StandByMe",
"_rev": "_ddo5xX2---",
"roles": [
"Ace Merrill"
],
"year": 1986
},
{
"_key": "309",
"_id": "actsIn/309",
"_from": "actors/MarshallB",
"_to": "movies/StandByMe",
"_rev": "_ddo5xbC---",
"roles": [
"Mr. Lachance"
],
"year": 1986
},
{
"_key": "314",
"_id": "actsIn/314",
"_from": "actors/JackN",
"_to": "movies/AsGoodAsItGets",
"_rev": "_ddo5xuS---",
"roles": [
"Melvin Udall"
],
"year": 1997
},
{
"_key": "316",
"_id": "actsIn/316",
"_from": "actors/HelenH",
"_to": "movies/AsGoodAsItGets",
"_rev": "_ddo5xya---",
"roles": [
"Carol Connelly"
],
"year": 1997
},
{
"_key": "318",
"_id": "actsIn/318",
"_from": "actors/GregK",
"_to": "movies/AsGoodAsItGets",
"_rev": "_ddo5x3a---",
"roles": [
"Simon Bishop"
],
"year": 1997
},
{
"_key": "320",
"_id": "actsIn/320",
"_from": "actors/CubaG",
"_to": "movies/AsGoodAsItGets",
"_rev": "_ddo5x52---",
"roles": [
"Frank Sachs"
],
"year": 1997
},
{
"_key": "327",
"_id": "actsIn/327",
"_from": "actors/Robin",
"_to": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yTK---",
"roles": [
"Chris Nielsen"
],
"year": 1998
},
{
"_key": "329",
"_id": "actsIn/329",
"_from": "actors/CubaG",
"_to": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yWW---",
"roles": [
"Albert Lewis"
],
"year": 1998
},
{
"_key": "331",
"_id": "actsIn/331",
"_from": "actors/AnnabellaS",
"_to": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yZG---",
"roles": [
"Annie Collins-Nielsen"
],
"year": 1998
},
{
"_key": "333",
"_id": "actsIn/333",
"_from": "actors/MaxS",
"_to": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yb6---",
"roles": [
"The Tracker"
],
"year": 1998
},
{
"_key": "335",
"_id": "actsIn/335",
"_from": "actors/WernerH",
"_to": "movies/WhatDreamsMayCome",
"_rev": "_ddo5yei---",
"roles": [
"The Face"
],
"year": 1998
},
{
"_key": "341",
"_id": "actsIn/341",
"_from": "actors/EthanH",
"_to": "movies/SnowFallingonCedars",
"_rev": "_ddo5yzC---",
"roles": [
"Ishmael Chambers"
],
"year": 1999
},
{
"_key": "343",
"_id": "actsIn/343",
"_from": "actors/RickY",
"_to": "movies/SnowFallingonCedars",
"_rev": "_ddo5y12---",
"roles": [
"Kazuo Miyamoto"
],
"year": 1999
},
{
"_key": "345",
"_id": "actsIn/345",
"_from": "actors/MaxS",
"_to": "movies/SnowFallingonCedars",
"_rev": "_ddo5y4u---",
"roles": [
"Nels Gudmundsson"
],
"year": 1999
},
{
"_key": "347",
"_id": "actsIn/347",
"_from": "actors/JamesC",
"_to": "movies/SnowFallingonCedars",
"_rev": "_ddo5y7e---",
"roles": [
"Judge Fielding"
],
"year": 1999
},
{
"_key": "354",
"_id": "actsIn/354",
"_from": "actors/TomH",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zRO---",
"roles": [
"Joe Fox"
],
"year": 1998
},
{
"_key": "356",
"_id": "actsIn/356",
"_from": "actors/MegR",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zV----",
"roles": [
"Kathleen Kelly"
],
"year": 1998
},
{
"_key": "358",
"_id": "actsIn/358",
"_from": "actors/GregK",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zXy---",
"roles": [
"Frank Navasky"
],
"year": 1998
},
{
"_key": "360",
"_id": "actsIn/360",
"_from": "actors/ParkerP",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zaO---",
"roles": [
"Patricia Eden"
],
"year": 1998
},
{
"_key": "362",
"_id": "actsIn/362",
"_from": "actors/DaveC",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zd6---",
"roles": [
"Kevin Jackson"
],
"year": 1998
},
{
"_key": "364",
"_id": "actsIn/364",
"_from": "actors/SteveZ",
"_to": "movies/YouveGotMail",
"_rev": "_ddo5zgW---",
"roles": [
"George Pappas"
],
"year": 1998
},
{
"_key": "371",
"_id": "actsIn/371",
"_from": "actors/TomH",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo5z8K---",
"roles": [
"Sam Baldwin"
],
"year": 1993
},
{
"_key": "373",
"_id": "actsIn/373",
"_from": "actors/MegR",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo50-e---",
"roles": [
"Annie Reed"
],
"year": 1993
},
{
"_key": "375",
"_id": "actsIn/375",
"_from": "actors/RitaW",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo50A6---",
"roles": [
"Suzy"
],
"year": 1993
},
{
"_key": "377",
"_id": "actsIn/377",
"_from": "actors/BillPull",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo50DS---",
"roles": [
"Walter"
],
"year": 1993
},
{
"_key": "379",
"_id": "actsIn/379",
"_from": "actors/VictorG",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo50Ga---",
"roles": [
"Greg"
],
"year": 1993
},
{
"_key": "381",
"_id": "actsIn/381",
"_from": "actors/RosieO",
"_to": "movies/SleeplessInSeattle",
"_rev": "_ddo50Jy---",
"roles": [
"Becky"
],
"year": 1993
},
{
"_key": "385",
"_id": "actsIn/385",
"_from": "actors/TomH",
"_to": "movies/JoeVersustheVolcano",
"_rev": "_ddo50Xe---",
"roles": [
"Joe Banks"
],
"year": 1990
},
{
"_key": "387",
"_id": "actsIn/387",
"_from": "actors/MegR",
"_to": "movies/JoeVersustheVolcano",
"_rev": "_ddo50e----",
"roles": [
"DeDe",
"Angelica Graynamore",
"Patricia Graynamore"
],
"year": 1990
},
{
"_key": "389",
"_id": "actsIn/389",
"_from": "actors/Nathan",
"_to": "movies/JoeVersustheVolcano",
"_rev": "_ddo50ga---",
"roles": [
"Baw"
],
"year": 1990
},
{
"_key": "395",
"_id": "actsIn/395",
"_from": "actors/BillyC",
"_to": "movies/WhenHarryMetSally",
"_rev": "_ddo50zC---",
"roles": [
"Harry Burns"
],
"year": 1998
},
{
"_key": "397",
"_id": "actsIn/397",
"_from": "actors/MegR",
"_to": "movies/WhenHarryMetSally",
"_rev": "_ddo501u---",
"roles": [
"Sally Albright"
],
"year": 1998
},
{
"_key": "399",
"_id": "actsIn/399",
"_from": "actors/CarrieF",
"_to": "movies/WhenHarryMetSally",
"_rev": "_ddo504S---",
"roles": [
"Marie"
],
"year": 1998
},
{
"_key": "433",
"_id": "actsIn/433",
"_from": "actors/BrunoK",
"_to": "movies/WhenHarryMetSally",
"_rev": "_ddo7CJe---",
"roles": [
"Jess"
],
"year": 1998
}
]
for d in data
INSERT d INTO actsIn

插入的数据如下

image-20211227155458904

使用命令

1
for v in actsIn return v

得到查询结果如下

image-20211227155613743

4.2 查询出演TheMatrix 或 TheDevilsAdvocate 的演员

4.2.1 查询出演TheMatrix的演员

查询命令如下

1
2
FOR x IN ANY 'movies/TheMatrix' actsIn
RETURN x

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
[
{
"_key": "Keanu",
"_id": "actors/Keanu",
"_rev": "_ddpPjj6--_",
"name": "Keanu Reeves",
"born": 1964
},
{
"_key": "Carrie",
"_id": "actors/Carrie",
"_rev": "_ddpPjj6--B",
"name": "Carrie-Anne Moss",
"born": 1967
},
{
"_key": "Laurence",
"_id": "actors/Laurence",
"_rev": "_ddpPjj6--D",
"name": "Laurence Fishburne",
"born": 1961
},
{
"_key": "Hugo",
"_id": "actors/Hugo",
"_rev": "_ddpPjj6--F",
"name": "Hugo Weaving",
"born": 1960
},
{
"_key": "Emil",
"_id": "actors/Emil",
"_rev": "_ddpPjj6--H",
"name": "Emil Eifrem",
"born": 1978
}
]

使用表格表示

image-20211227160331030

4.2.2 合并查询结果

使用 UNION_DISTINCT关键字合并查询结果

查询命令如下

1
2
3
4
5
FOR v IN UNION_DISTINCT(
( FOR x IN ANY 'movies/TheMatrix' actsIn RETURN x),
( FOR y IN ANY 'movies/TheDevilsAdvocate' actsIn RETURN y)
)
return v

得到的结果如下

image-20211227160714584

4.3 查询同时出演TheMatrix 或 TheDevilsAdvocate 的演员

这种情况下可以使用关键字INTERSECTION进行查询

1
2
3
4
5
FOR v IN INTERSECTION(
( FOR x IN ANY 'movies/TheMatrix' actsIn RETURN x),
( FOR y IN ANY 'movies/TheDevilsAdvocate' actsIn RETURN y)
)
return v

得到的查询结果如下

image-20211227161649341

4.4 查询两个演员同时出演的电影

这其实和关于movie1和movie2中共同演员的问题是一样的。 我们只需要改变起始顶点。 例如,让我们找出 Hugo Weaving 和Keanu Reeves 共同主演的所有电影:

1
2
3
4
FOR v IN INTERSECTION(
(FOR x IN ANY 'actors/Hugo' actsIn RETURN x),
(FOR y IN ANY 'actors/Keanu' actsIn RETURN y)
) RETURN v

得到的查询结果如下

image-20211227161955515

4.5 查询出演出过三部及以上电影的演员

将利用 AQL 的边缘索引和 COLLECT 语句进行分组。 基本思想是按起始顶点(在此数据集中始终是参与者)对所有边进行分组。 然后我们从结果中删除所有少于 3 部电影的演员。 下面的查询还返回计算出的演员演过的电影数量:

查询命令如下

1
2
3
4
FOR x IN actsIn
COLLECT actor = x._from WITH COUNT INTO counter
FILTER counter >= 3
RETURN { actor: actor, movies: counter }

得到的结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
[
{
"actor": "actors/Carrie",
"movies": 3
},
{
"actor": "actors/CubaG",
"movies": 4
},
{
"actor": "actors/Hugo",
"movies": 3
},
{
"actor": "actors/Keanu",
"movies": 4
},
{
"actor": "actors/Laurence",
"movies": 3
},
{
"actor": "actors/MegR",
"movies": 5
},
{
"actor": "actors/TomC",
"movies": 3
},
{
"actor": "actors/TomH",
"movies": 3
}
]

使用表格表示为

image-20211227162234783

4.6 查询出仅有6个演员的电影

与之前查询中的想法相同,但使用相等过滤器,但是现在我们需要电影而不是演员,因此我们返回 _to 属性:

1
2
3
4
FOR x IN actsIn
COLLECT movie = x._to WITH COUNT INTO counter
FILTER counter == 6
RETURN movie

查询结果如下

1
2
3
4
5
[
"movies/SleeplessInSeattle",
"movies/TopGun",
"movies/YouveGotMail"
]

4.7 根据电影查询演员数量

我们记得在我们的数据集中 _to 边缘对应于电影,因此我们计算相同 _to 出现的频率。 这是演员的数量。 该查询与之前的查询几乎相同,但在 COLLECT 之后没有 FILTER:

1
2
3
FOR x IN actsIn
COLLECT movie = x._to WITH COUNT INTO counter
RETURN { movie: movie, actors: counter }

得到结果如下

image-20211227162639476

4.8 根据演员查询电影的数量

边上的_to属性对应的是actor,所以我们按它分组,用COLLECT计数。 作为奖励,我们可以添加排序以首先返回拥有最多电影的演员:

1
2
3
4
FOR x IN actsIn
COLLECT actor = x._from WITH COUNT INTO counter
SORT counter DESC
RETURN { actor: actor, movies: counter }

得到的查询结果如下

image-20211227162828385

4.9 演员在两年内出演的电影数量

这个查询是多模型数据库真正发挥作用的地方。 首先我们想在生产中使用它,所以我们在 year 上设置了一个持久性索引。 这允许执行诸如 1990 和 1995 之间的快速范围查询。

1
db.actsIn.ensureIndex({ type: "persistent", fields: ["year"] });

然后执行

1
2
3
4
FOR x IN actsIn
FILTER x.year >= 1990 && x.year <= 1995
COLLECT actor = x._from WITH COUNT INTO counter
RETURN { actor: actor, movies: counter }

得到的结果如下

image-20211227163035896

4.10 根据演员姓名查询其电影年份和数量

如果我们想返回一个年份列表,而不仅仅是演员出演的电影数量,那么我们不能使用 COLLECT WITH COUNT INTO,因为我们只能在分组后访问演员和计数器。 相反,我们可以使用 COLLECT ... INTO来跟踪每个演员的电影年数。 年数等于电影的数量。

为简单起见,示例查询仅限于两个参与者。 作为额外的附加功能,它使用DOCUMENT() 函数查找演员姓名:

1
2
3
4
5
6
7
8
FOR x IN actsIn
FILTER x._from IN [ "actors/TomH", "actors/Keanu" ]
COLLECT actor = x._from INTO years = x.year
RETURN {
name: DOCUMENT(actor).name,
movies: COUNT(years),
years
}

查询结果如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
[
{
"name": "Keanu Reeves",
"movies": 4,
"years": [
1999,
2003,
2003,
1997
]
},
{
"name": "Tom Hanks",
"movies": 3,
"years": [
1998,
1993,
1990
]
}
]

使用表格表示为

image-20211227163400928

4.11 查询孤立节点

方法一

1
2
3
4
5
6
7
8
9
for m in moveies 

let a = (
for r in relation
filter r._from== m._id
return count(count(r)))

filter a[0]==null
return m

方法二

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
for m in moveies

let a =(
FOR v, e, p IN 1..1 OUTBOUND m GRAPH 'sds'
return {v:v,e:e,p:p}
)

let b =(
FOR v, e, p IN 1..1 INBOUND m GRAPH 'sds'
return {v:v,e:e,p:p}
)

filter count(a)==0 && count(b)==0

return m

方法三

1
2
3
4
5
6
7
8
9
10
for m in moveies

let a =(
FOR v, e, p IN 1..1 ANY m GRAPH 'sds'

return {v:v,e:e,p:p}
)
filter count(a)==0

return m