安卓环境下人工智能模型部署

有没有一扇窗,能让你不绝望,看一看花花世界,然来梦一场,有人哭,有人笑,有人输,有人老,到结局还不是一样

Posted by yishuifengxiao on 2021-06-25

本文档主要是简单地描述了在安卓环境下如何部署模型,在部署过程中涉及到opencv和百度飞浆的整合以及安卓中JNI的使用。

本文档环境如下

  • 操作系统:win10
  • IDE :android studio 4.1.2
  • opencv:3.4.5

整合过程中,会先在百度飞浆sample项目的基础上整合百度飞浆的功能,然后引入项目中需要使用到的opencv模块,接着使用jni调用自定义模型进行数据处理,最后接收处理的结果并显示在安卓界面上。

一 基础环境准备

在android studio中创建一个Native工程,步骤如下:

image-20210625091235828

图1 创建Native项目

image-20210625091530049

图2 配置项目

image-20210625091614598

图3 配置activity

选择如图所示的配置,点击完成按钮,稍等一段时间,会看到如下图4所示的界面,表示项目创建完成。

image-20210625091909802

图4 项目初始化界面

从上图4可以看到,IDE已经构建好了完整的基础JNI项目骨架,尝试运行项目,可以在安卓模拟器中看到如下运行结果

image-20210625092607614

图5 运行结果

从上图5可知,一个基础的JNI开发调试环境已经构建完成。

二 引入飞浆

在引入飞浆功能,需要先修改项目的app目录下的 build.gradle 文件,加上飞浆相关的依赖文件。

image-20210625092851175

图6 需要修改的文件

修改后的完整的 build.gradle 文件内容如下:

import java.security.MessageDigest

plugins {
id 'com.android.application'
}

android {
compileSdkVersion 30
buildToolsVersion "30.0.3"

defaultConfig {
applicationId "com.example.aisample"
minSdkVersion 16
targetSdkVersion 30
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags ""
}
ndk {
//选择要添加的对应cpu类型的.so库。
abiFilters 'armeabi-v7a'
// 还可以添加 'x86', 'x86_64', 'mips', 'mips64'
}
}
}

buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"
}
}
compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8
}
sourceSets {
main {
jniLibs.srcDirs = ['src/main/jniLibs']
}
}
}

dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'com.google.android.material:material:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'
implementation files('libs/PaddlePredictor.jar')
}


def paddleLiteLibs = 'https://paddlelite-demo.bj.bcebos.com/libs/android/paddle_lite_libs_v2_9_0.tar.gz'
task downloadAndExtractPaddleLiteLibs(type: DefaultTask) {
doFirst {
println "Downloading and extracting Paddle Lite libs"
}
doLast {
// Prepare cache folder for libs
if (!file("cache").exists()) {
mkdir "cache"
}
// Generate cache name for libs
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(paddleLiteLibs.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download libs
if (!file("cache/${cacheName}.tar.gz").exists()) {
ant.get(src: paddleLiteLibs, dest: file("cache/${cacheName}.tar.gz"))
}
// Unpack libs
if (!file("cache/${cacheName}").exists()) {
copy {
from tarTree("cache/${cacheName}.tar.gz")
into "cache/${cacheName}"
}
}

// Copy PaddlePredictor.jar
if (!file("libs/PaddlePredictor.jar").exists()) {
copy {
from "cache/${cacheName}/java/PaddlePredictor.jar"
into "libs"
}
}
// Copy libpaddle_lite_jni.so for armeabi-v7a and arm64-v8a
if (!file("src/main/jniLibs/armeabi-v7a/libpaddle_lite_jni.so").exists()) {
copy {
from "cache/${cacheName}/java/libs/armeabi-v7a/"
into "src/main/jniLibs/armeabi-v7a"
// into "src/main/jni/armeabi-v7a"
}
}
if (!file("src/main/jniLibs/arm64-v8a/libpaddle_lite_jni.so").exists()) {
copy {
from "cache/${cacheName}/java/libs/arm64-v8a/"
into "src/main/jniLibs/arm64-v8a"
// into "src/main/jni/arm64-v8a"
}
}
}
}
preBuild.dependsOn downloadAndExtractPaddleLiteLibs

def paddleLiteModels = [
[
'src' : 'https://paddlelite-demo.bj.bcebos.com/models/deeplab_mobilenet_fp32_for_cpu_v2_9_0.tar.gz',
'dest': 'src/main/assets/image_segmentation/models/deeplab_mobilenet_for_cpu'
],
]
task downloadAndExtractPaddleLiteModels(type: DefaultTask) {
doFirst {
println "Downloading and extracting Paddle Lite models"
}
doLast {
// Prepare cache folder for models
String cachePath = "cache"
if (!file("${cachePath}").exists()) {
mkdir "${cachePath}"
}
paddleLiteModels.eachWithIndex { model, index ->
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(model.src.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download the target model if not exists
boolean copyFiles = !file("${model.dest}").exists()
if (!file("${cachePath}/${cacheName}.tar.gz").exists()) {
ant.get(src: model.src, dest: file("${cachePath}/${cacheName}.tar.gz"))
copyFiles = true; // force to copy files from the latest archive files
}
// Copy model file
if (copyFiles) {
copy {
from tarTree("${cachePath}/${cacheName}.tar.gz")
into "${model.dest}"
}
}
}
}
}
preBuild.dependsOn downloadAndExtractPaddleLiteModels

注意,默认的项目没有assets文件夹,需要手动创建,创建步骤如下

image-20210625094312014

图7 创建assets文件夹

创建好文件夹后,复制飞浆所需要的资源到项目对应的路径下面

image-20210625100541847

图8 复制好资源的项目

复制好所需的项目资源后,接下来复制所需的的java代码到对应的项目路径了。然后运行项目,在安卓模拟器里可以看到如下的界面。

image-20210625103836979

图9 飞浆运行结果

三 引入opencv

在引入opencv时,需要先到opencv官网下载好对应的资源包。

image-20210625104210263

图10 opencv官网下载地址

选择下载的版本为 3.4.5 ,类型的为安卓平台。注意这里下载的opencv版本需要根据项目进行调整,并不是任意一个版本或者是越新的版本越好。 下载完成后,将下载好的压缩包解压,得到如下的结构

image-20210625104709621

图11 opencv解压后的目录

在项目里创建一个JNI目录,创建此目录的方法如下

image-20210625104923829

图12 创建JNI目录

先将图11中对应的libs里面的内容复制到此JNI目录里。然后将图11中对应的jni目录里的include文件夹复制到项目的cpp的目录下。

复制完资源到对应的目录后,然后修改cpp路径下的 CMakeLists.txt 文件,通过cmake引入opencv功能。修改后的完整的 CMakeLists.txt内容如下

# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html

# Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.10.2)

# Declares and names the project.

project("aisample")


# 设置include文件夹的地址
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include)
include_directories("include")


# 设置opencv的动态库
add_library(libopencv_java3 SHARED IMPORTED)
set_target_properties(libopencv_java3 PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/../jni/${ANDROID_ABI}/libopencv_java3.so)

# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.

add_library( # Sets the name of the library.
native-lib

# Sets the library as a shared library.
SHARED

# Provides a relative path to your source file(s).
native-lib.cpp)

# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.

find_library( # Sets the name of the path variable.
log-lib

# Specifies the name of the NDK library that
# you want CMake to locate.
log)

# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.

target_link_libraries( # Specifies the target library.
native-lib

# 引入opencv
libopencv_java3
# Links the target library to the log library
# included in the NDK.
${log-lib})

然后修改app目录下的build.gradle文件,在defaultConfig目录下的externalNativeBuild的cmake增加如下配置arguments "-DANDROID_STL=c++_shared" 。除此以外,还需要加上opencv相关的jar引用配置。

修改后的文件的内容如下

import java.security.MessageDigest

plugins {
id 'com.android.application'
}

android {
compileSdkVersion 28
buildToolsVersion "30.0.3"

defaultConfig {
applicationId "com.example.aisample"
minSdkVersion 16
targetSdkVersion 28
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags ""
arguments "-DANDROID_STL=c++_shared"
}
ndk {
//选择要添加的对应cpu类型的.so库。
abiFilters 'armeabi-v7a'
// 还可以添加 'x86', 'x86_64', 'mips', 'mips64'
}
}
}

buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
}
}
externalNativeBuild {
cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"
}
}
compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8
}
sourceSets {
main {
jniLibs.srcDirs = ['src/main/jniLibs']
}
}
}

dependencies {
implementation fileTree(include: ['*.jar'], dir: 'libs')
implementation 'androidx.appcompat:appcompat:1.1.0'
implementation 'com.google.android.material:material:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:1.1.3'
implementation 'com.android.support:appcompat-v7:28.0.0'
implementation 'com.android.support:design:28.0.0'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.1'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.2.0'
implementation files('libs/PaddlePredictor.jar')
implementation 'org.opencv:openCVLibrary:3.4.0'
}


def paddleLiteLibs = 'https://paddlelite-demo.bj.bcebos.com/libs/android/paddle_lite_libs_v2_9_0.tar.gz'
task downloadAndExtractPaddleLiteLibs(type: DefaultTask) {
doFirst {
println "Downloading and extracting Paddle Lite libs"
}
doLast {
// Prepare cache folder for libs
if (!file("cache").exists()) {
mkdir "cache"
}
// Generate cache name for libs
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(paddleLiteLibs.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download libs
if (!file("cache/${cacheName}.tar.gz").exists()) {
ant.get(src: paddleLiteLibs, dest: file("cache/${cacheName}.tar.gz"))
}
// Unpack libs
if (!file("cache/${cacheName}").exists()) {
copy {
from tarTree("cache/${cacheName}.tar.gz")
into "cache/${cacheName}"
}
}

// Copy PaddlePredictor.jar
if (!file("libs/PaddlePredictor.jar").exists()) {
copy {
from "cache/${cacheName}/java/PaddlePredictor.jar"
into "libs"
}
}
// Copy libpaddle_lite_jni.so for armeabi-v7a and arm64-v8a
if (!file("src/main/jniLibs/armeabi-v7a/libpaddle_lite_jni.so").exists()) {
copy {
from "cache/${cacheName}/java/libs/armeabi-v7a/"
into "src/main/jniLibs/armeabi-v7a"
// into "src/main/jni/armeabi-v7a"
}
}
if (!file("src/main/jniLibs/arm64-v8a/libpaddle_lite_jni.so").exists()) {
copy {
from "cache/${cacheName}/java/libs/arm64-v8a/"
into "src/main/jniLibs/arm64-v8a"
// into "src/main/jni/arm64-v8a"
}
}
}
}
preBuild.dependsOn downloadAndExtractPaddleLiteLibs

def paddleLiteModels = [
[
'src' : 'https://paddlelite-demo.bj.bcebos.com/models/deeplab_mobilenet_fp32_for_cpu_v2_9_0.tar.gz',
'dest': 'src/main/assets/image_segmentation/models/deeplab_mobilenet_for_cpu'
],
]
task downloadAndExtractPaddleLiteModels(type: DefaultTask) {
doFirst {
println "Downloading and extracting Paddle Lite models"
}
doLast {
// Prepare cache folder for models
String cachePath = "cache"
if (!file("${cachePath}").exists()) {
mkdir "${cachePath}"
}
paddleLiteModels.eachWithIndex { model, index ->
MessageDigest messageDigest = MessageDigest.getInstance('MD5')
messageDigest.update(model.src.bytes)
String cacheName = new BigInteger(1, messageDigest.digest()).toString(32)
// Download the target model if not exists
boolean copyFiles = !file("${model.dest}").exists()
if (!file("${cachePath}/${cacheName}.tar.gz").exists()) {
ant.get(src: model.src, dest: file("${cachePath}/${cacheName}.tar.gz"))
copyFiles = true; // force to copy files from the latest archive files
}
// Copy model file
if (copyFiles) {
copy {
from tarTree("${cachePath}/${cacheName}.tar.gz")
into "${model.dest}"
}
}
}
}
}
preBuild.dependsOn downloadAndExtractPaddleLiteModels

四 整合项目

将项目自定义文件复制到src\main\cpp\ 目录下,然后在 CMakeLists.txt 文件里增加配置,修改后的配置文件如下

# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html

# Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.10.2)

# Declares and names the project.

project("aisample")


# 设置include文件夹的地址
include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/include)
include_directories("include")


# 设置opencv的动态库
add_library(libopencv_java3 SHARED IMPORTED)
set_target_properties(libopencv_java3 PROPERTIES IMPORTED_LOCATION
${CMAKE_SOURCE_DIR}/../jni/${ANDROID_ABI}/libopencv_java3.so)

# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.

add_library( # Sets the name of the library.
native-lib

# Sets the library as a shared library.
SHARED

# Provides a relative path to your source file(s).
native-lib.cpp

# 需要使用到的cpp文件这里都要引入,否则会出问题
demo/demo.cpp
demo/Scanner.cpp
demo/document_detection.cpp


)

# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.

find_library( # Sets the name of the path variable.
log-lib

# Specifies the name of the NDK library that
# you want CMake to locate.
log)

# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.

target_link_libraries( # Specifies the target library.
native-lib

# 引入opencv
libopencv_java3
# Links the target library to the log library
# included in the NDK.
${log-lib})

然后修改MainActivity文件,主要修改的地方如下

在模型运行成功后调用自定义模型对飞浆的输出结果进行处理

public void onRunModelSuccessed() {
// obtain results and update UI
tvInferenceTime.setText("Inference time: " + predictor.inferenceTime() + " ms");
//飞浆训练后的图片
Bitmap outputImage = predictor.outputImage();
// 原始的图片
Bitmap rawImage = predictor.rawImage();
//裁剪后的图片
Bitmap scaledImage = predictor.scaledImage();

//接收飞浆出来的数据,使用此数据进行训练
new Thread(() -> {
train(rawImage, outputImage);
}).start();

if (outputImage != null) {
ivInputImage.setImageBitmap(outputImage);
}
tvOutputResult.setText(predictor.outputResult());
tvOutputResult.scrollTo(0, 0);
}

自定义处理过程的核心代码如下


private void train(Bitmap rawImage, Bitmap outputImage) {

saveImg(rawImage, "original_rawImage_");
saveImg(outputImage, "original_outputImage_");

Bitmap whiteImg = ImageUtil.fileBackgroup(outputImage);

saveImg(whiteImg, "original_fill_outputImage_");


//mat转灰度
Mat mat_source_gray = ImageUtil.bitMap2GrayMat(rawImage);
Mat mat_mark_gray = ImageUtil.bitMap2GrayMat(whiteImg);


// 回显灰度图检查是否正确
Bitmap bitmap_mark_dist = ImageUtil.mat2Bitmap(mat_mark_gray);
saveImg(bitmap_mark_dist, "mark_gray_");


Mat demo = new Mat();

test(mat_source_gray.getNativeObjAddr(), mat_mark_gray.getNativeObjAddr(), demo.getNativeObjAddr());

Bitmap resultImg = ImageUtil.mat2Bitmap(demo);

saveImg(resultImg, "return_image_");

////通过 activity 的 runOnUiThread方法更新界面
runOnUiThread(() -> ivInputImage.setImageBitmap(resultImg));


}

这里使用到的JNI接口的定义如下


public native long test(long src, long dist, long returnVal);

对应的native code里的接口的定义如下

extern "C" JNIEXPORT jlong JNICALL
Java_com_example_aisample_MainActivity_test(JNIEnv *env, jobject cls, jlong addr_src_pic,
jlong addr_mask_pic, jlong return_val) {
////////
// 这里省略具体的处理代码
//////

}

此时完整的项目结构如下

image-20210625114840230

图13 完整的项目结构

五 输出结果

完成相关的处理代码后,运行项目,可以看到在安卓模拟器的界面显示如下

image-20210625114222206

图14 运行结果

从图14可以看到,输出结果显示图像已经处理完成,取得了预期的效果。

此外,打开IDE的文件浏览器功能,在/storage/emulated/0/Pictures目录下可以看到已经生成了下面几张图片,从这几张图片里可以完全了解整个图片处理的全过程。

image-20210625114611438

图15 处理过程中生成的图片